#P1631. 汉诺塔问题
汉诺塔问题
当前没有测试数据。
【问题描述】
法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:
在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针。
印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,
这就是所谓的汉诺塔。不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:
一次只移动一片,不管在哪根针上,小片必须在大片上面。僧侣们预言,
当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,
而梵塔、庙宇和众生也都将同归于尽。
不管这个传说的可信度有多大,如果考虑一下把64片金片,由一根针上移到另一根针上,
并且始终保持上小下大的顺序。这需要多少次移动呢?
这里需要递归的方法。假设有n片,移动次数是f(n).显然f(1)=1,f(2)=3,f(3)=7,且f(k+1)=2*f(k)+1。此后不难证明f(n)=2^n-1。n=64时,
假如每秒钟一次,共需多长时间呢?一个平年365天有31536000 秒,闰年366天有31622400秒,
平均每年31556952秒,计算一下:
18446744073709551615秒
这表明移完这些金片需要5845.54亿年以上,而地球存在至今不过45亿年,
太阳系的预期寿命据说也就是数百亿年。真的过了5845.54亿年,不说太阳系和银河系,
至少地球上的一切生命,连同梵塔、庙宇等,都早已经灰飞烟灭
输入
3
输出
A->C
A->B
C->B
A->C
B->A
B->C
A->C
【说明】
输入的n<=9